Физики сделали МРТ отдельным атомам - Dikobraz NEWS

Физики сделали МРТ отдельным атомам

Физики сделали МРТ отдельным атомам

Физики сделали МРТ отдельным атомамФизики сделали МРТ отдельным атомамФизики сделали МРТ отдельным атомамФизики сделали МРТ отдельным атомамФизики сделали МРТ отдельным атомам


Ученые исследовали
рекордно малый объект при помощи магнитно-резонансной томографии — им удалось определить магнитные свойства отдельных атомов. Развитие метода
позволит напрямую изучать взаимодействия спинов и магнитные свойства плоских молекул,
пишут авторы в журнале Nature Physics.

Магнитно-резонансная
томография — это способ построения томограмм (послойных изображений) объектов,
основанный на явлении ядерного магнитного резонанса. Он заключается в реакции
атомных ядер с ненулевым магнитным моментом на внешнее магнитное поле. В
результате становится возможным получение изображений внутренностей тел, в
состав которых входят такие ядра.

Магнитный момент ядра определяется
спинами входящих в него нуклонов — протонов и нейтронов. Все нуклоны обладают
спином ½, причем разным видам энергетически выгодно спариваться с параллельными
спинами. Однако это не противоречит принципу запрета Паули, потому что протон и
нейтрон, хоть и относятся оба к фермионам, не являются идентичными частицами.

В
зависимости от четности количества нуклонов свойства ядер различаются. У
систем из четного количества как протонов, так и нейтронов, суммарный спин и, соответственно,
магнитный момент, равны нулю в невозбужденном состоянии. В других случаях спин и
магнитный момент отличны от нуля. Например, у обычного водорода в ядре лишь один
неспаренный протон, поэтому спин равен ½, а у более тяжелого изотопа дейтерия
один нейтрон и один протон, поэтому спин равен единице. В то же время
добавление еще одного нейтрона (ядро трития) заставляет нейтральные частицы
ориентировать спины в противоположные стороны, поэтому суммарный спин ядра
оказывается опять равен ½.

В присутствии внешнего постоянного
магнитного поля спины выстраиваются вдоль направления его силовых линий. Затем при
помощи дополнительного импульса переменного магнитного поля спины выводятся из
состояния равновесия. По мере их последующей релаксации к прежнему положению ядра
испускают измеряемый сигнал, который позволяет определить их наличие. Обычно
для исследования живых тканей или образцов материалов используются миллионы и
миллиарды ядер, как правило, водорода.

Читать ещё:  Побит рекорд температуры для сверхпроводимости

В работе ученых из США и
Южной Кореи описывается модифицированный метод ядерного магнитного резонанса,
который позволяет изучать намного более мелкие объекты. Для этого авторы объединили
принцип работы томографа со сканирующим туннельным микроскопом — инструментом,
позволяющим исследовать рельеф проводящих объектов благодаря протекающему между
образцом и тонкой иглой микроскопа туннельному току.

Физики изучали атомы железа
и титана, помещенные на подложку. Индивидуальные атомы были видны в сам
туннельный микроскоп, но авторы использовали его иглу в качестве
магнитно-резонансного томографа, что позволило картировать создаваемое
частицами магнитное поле с чрезвычайно высоким пространственным разрешением. В
качестве магнитного зонда на кончике иглы был размещено несколько атомов
железа.

Исследователи использовали
эффект электронного парамагнитного резонанса — аналогичного ядерному резонансу эффекта,
в котором возбуждаются спины электронов. Облучение импульсами радиочастотного
диапазона создавало необходимое возмущение, релаксация после которого позволила
послойно определить магнитное поле отдельных атомов.

«Оказалось, что измеренное
магнитное взаимодействие зависело от свойств обоих спинов, как расположенного
на конце иглы, так и исследуемого, — говорит ведущий автор работы Фили Уиллике (Philip
Willke) из Исследовательского центра IBM в Алмадене. — В частности, сигнал атома железа
значительно отличается от производимого атомом титана, что позволяет нам различать
их на основе характеристик магнитного поля, что делает метод очень эффективным».

С помощью магнитной томографии можно не только диагностировать болезни у человека и исследовать интересные с физической точки зрения материалы, но и получать красивые картинки, например, засунув в томограм овощи и фрукты, что мы показывали в материале «Магнитно-овощная томография». Также ядерный магнитный резонанс позволил детально исследовать сверхтекучий гелий-3 и найти в нем хиральные домены.

Тимур Кешелава



Источник
Автор: Физик Александр Пушной