• 24.12.2024 21:18

    Искусственный интеллект MIT научился тренировать нейросети быстрее, чем когда-либо

    Автор:beron

    Май 7, 2019 #наука, #техника
    Искусственный интеллект MIT научился тренировать нейросети быстрее, чем когда-либо

    В попытке «демократизировать ИИ» ученые Массачусетского технологического института нашли способ использовать искусственный интеллект для гораздо более эффективного обучения систем машинного обучения — то есть, нейросетей. Они надеются, что новый алгоритм, позволяющий сэкономить время и средства, позволит ограниченным в ресурсах исследователям и компаниям автоматизировать проектирование нейронных сетей. Другими словами, сокращая время и затраты, они могли бы сделать эту технику ИИ более доступной.

     

    Новая область искусственного интеллекта включает использование алгоритмов для автоматического проектирования нейросетей, которые являются более точными и эффективными, чем разработанные человеческими инженерами. Но эта технология нейронно-архитектурного поиска (neural architecture search, NAS) является затратной с точки зрения вычислительной мощности.

    Самый современный алгоритм NAS, недавно разработанный Google для работы на куче графических процессоров, потратил 48 000 GPU-часов для создания одной сверточной нейронной сети, которая используется для классификации изображений и задач обнаружения. У Google есть возможность параллельно запускать сотни графических процессоров и другого специализированного оборудования параллельно, но такое недоступно для многих других.

    Алгоритм NAS, представленный Массачусетским технологическим институтом, может напрямую обучать специализированные сверточные нейросети (CNN) для целевых аппаратных платформ — при работе с массивным набором данных изображений — всего за 200 GPU-часов, что значительно расширяет потенциальное использование этих типов алгоритмов.

    По мнению ученых, ограниченные в ресурсах исследователи и компании могли бы извлечь выгоду из алгоритма в виде экономии времени и затрат. Общей целью является «демократизация ИИ», говорит соавтор исследования Сонг Хан, доцент кафедры электротехники и компьютерных наук Microsystems Technology Laboratories в MIT. «Мы хотим, чтобы как эксперты по искусственному интеллекту, так и неспециалисты эффективно проектировали архитектуры нейросетей с помощью простого решения, которое быстро работает на конкретном оборудовании».

    Однако он добавляет, что такие NAS-алгоритмы никогда не заменят инженеров-людей. «Цель состоит в том, чтобы избавиться от повторяющейся и утомительной работы, связанной с проектированием и усовершенствованием архитектуры нейронных сетей».

    Что ж, все это только ускоряет наступление общего искусственного интеллекта. Кстати, почитайте наш материал про Демиса Хассабиса, основателя DeepMind — одной из самых многообещающих компаний в области ИИ.

    Опубликовано: 24.03.2019 в 04:00

    Автор: Брайн Смит

     

    [ comments ]

    Источник
    Автор: Брайн Смит

    Автор: beron